International Multidisciplinary Conference Hosted from Manchester, England 25th Dec. 2022

https://conferencea.org

SOME PROPERTIES OF THE SPACE OF PROBABILITY MEASURES

Rakhmatullayev A. X.

Davletov D. E.

Mongiyev A.I.

e-mail: olimboy56@gmail.com, de _ davletov@mail

In this note we consider covariant functors acting in the categorie of compacts, preserving the shapes of infinite compacts, *ANR*-systems, moving compacts, shape equivalence, homotopy equivalence and A(N)SR properties of compacts. As well as, shape properties of a compact space X consisting of connectedness components 0 of this compact X under the action of covariant functors, are considered. And as we study the shapes equality ShX = ShY of infinite compacts for the space P(X) of probability measures and its subspaces.

For a compact X by P(X) denote the space of probability measures. It is known that for an infinite compact X, this space P(X) is homeomorphic to the Hilbert cube Q. For a natural number $n \in N$ by $P_n(X)$ denote the set of all probability measures with no more than n support, i.e. $P_n(X) = \{\mu \in P(X) : |supp\mu| \le n\}$. The compact $P_n(X)$ is a convex linear combination of Dirac measures in the form

$$\mu = m_1 \delta_{x_1} + m_2 \delta_{x_2} + \dots + m_n \delta_{x_n}, \sum_{i=1}^n m_i = 1, m_i \ge 0, x_i \in X,$$

 δ_{x_i} - the Dirac measure at a point x_i . By $\delta(X)$ denote the set of all Dirac measures. Recall that the space $P_f(X) \subset P(X)$ consists of all probability measures in the form $\mu = m_1 \delta_{x_1} + m_2 \delta_{x_2} + ... + m_k \delta_{x_k}$ of finite support, for each of which $m_i \ge \frac{k}{k+1}$ for some *i*. For a positive integer *n* put $P_{f,n} \equiv P_f \bigcap P_n$. For a compact *X* we have $P_{f,n}(X) = \{\mu \in P_f(X) : |supp\mu| \le n\}; \quad P_f^c \equiv P_f \bigcap P^c, P_{f,n}^c \equiv P_f \bigcap P_n \bigcap P^c. P_n^c \equiv P^c \bigcap P$. For the compact *X* by $P^c(X)$ denote the set of all measures $\mu \in P(X)$ the support of each of which lies in one of the components of the compact *X* [7].

For a space *X* by ΩX denote the expansion (partition) of the space *X* consisting of all the connected components. If $f: X \to Y$ is a continuous mapping, then the continuous mapping $\Omega f: \Omega X \to \Omega Y$ is uniquely determined by condition $\pi_Y \circ f = \Omega f \cdot \pi_X$, where $\pi_Y: Y \to \Omega Y$ and $\pi_X: X \to \Omega X$, i.e. we have the following diagram

International Multidisciplinary Conference Hosted from Manchester, England 25th Dec. 2022

https://conferencea.org

Lemma 1. If X is a compact ANR-space, then the map $P^c(\pi_x)$ is a homotopy equivalence. **Theorem 1.** Let X be a compact and let $\pi_x : X \to \Omega X$ be a quotient map. Then the mapping $P^c(\pi_x)$ induces a shape equivalence, i.e. $Sh(P^c(X)) = Sh(\Omega X)$.

Definition [5] A normal subfunctor F of the functor P_n is called locally convex if the set $F(\tilde{n})$ is locally convex.

We say that a functor F_1 is a subfunctor (respectively nadfunktorom?) of a functor F_2 if there exists a natural transformation $h: F_1 \to F_2$ that the map $h(X): F_1(X) \to F_2(X)$ is a monomorphism (epimorphism) for each object X. By exp denote the hyperspace functor of closed subsets. For example, the identity functor Id is a subfunctor of \exp_n , where $\exp_n X = \{F \in \exp X : |F| \le n\}$, and the *n* th degree functor ⁿ is a nadfunktorom of functors \exp_n and SP_G^n . A normal subfunctor *F* of the functor P_n is uniquely determined by its value F(n) at an *n*-point space. Note that $P_n(n)$ is the (n-1)-dimensional simplex. Any subset of the (n-1)-dimensional simplex σ^{n-1} defines a normal subfunctor of the functor P_n if it is invariant under simplicial mappings.

An example of not normal subfunctor of the functor P_n is the functor of probability measures P_n^c whose supports lie in one of components. One of the examples of locally convex subfunctors of P_n , is a functor $SP^n \equiv SP_{S_n}^n$.

Corollary 1. If for compacts X and Y the equality $|\Omega X| = |\Omega Y| = \aleph_0$ holds, then $Sh(P^c(X)) = Sh(P^c(Y))$ and ShP(X) = ShP(Y), where |Z| is the cardinality of a set Z. By M_{Ω} we denote the class of all compacts X such that ΩX is metrizable. From corollary it follows that if $X, Y \in M_{\Omega}$, then ΩX and ΩY have a countable dense set of isolated points [4]. **Corollary 2.** If $X, Y \in M_{\Omega}$, then either $Sh(P^c(X)) \ge Sh(P^c(Y))$ or $Sh(P^c(X)) \le Sh(P^c(Y))$. Therefore, if ΩX and ΩY are infinite, then $Sh(P^c(X)) = Sh(P^c(Y))$, i.e. $Sh(P^c(X)) \ge Sh(P^c(Y))$ and $Sh(P^c(X)) \ge Sh(P^c(Y))$.

International Multidisciplinary Conference Hosted from Manchester, England 25th Dec. 2022

https://conferencea.org

Remark. In [6] it is shown that the Borsuk's definition of shapes of compacts is equivalent to the shapes of *ANR*-systems.

Lemma 2. For any compact X we have $|\Omega P_f(X)| = |\Omega X|$.

Let us note that for all $x \in X$ and $y \in X$ between sets $(r_f^{-1})(x)$ and $(r_f^{-1})(y)$ there is a one-one correspondence, i.e. to an arbitrary point

 $\mu_x \in (P_f^{-1})(X)$ we assign $\mu_y \in (P_f^x)^{-1}$, where

$$\mu_{x} = m_{0}\delta_{x_{0}} + m_{1}\delta_{x_{1}} + \dots + m_{k}\delta_{x_{k}}, \\ \mu_{y} = m_{0}\delta_{y_{0}} + \dots + m_{k}\delta_{x_{k}}.$$

In the case of the infinite compacts X and Y the spaces P(X) and P(Y) are homeomorphic to the Hilbert cube Q. If A and B are Z-sets lying in the compacts P(X) and P(Y), then by Chapman's theorem [1], ShA = ShB if and only if $P(X) \setminus A$ is homeomorphic to $P(Y) \setminus B$. In [5,7] it is shown that the subspaces F(X) and F(Y) are Z-sets in the compacts P(X) and P(Y), where $F = P_f(X), P_{f,n}(X), P_{f,n}^c(X), P_f^c(X)$. Moreover, it was noted that this space X is a strong deformation retract for F(X). So the following is valid.

Theorem 2. For infinite compacts X and Y the following conditions are equivalent: 1. ShX = ShY;

2. $P(X) \setminus P_f(X); P(Y) \setminus P_f(Y);$

3. $P(X) \setminus \delta(X); P(Y) \setminus \delta(Y);$

4. $P(X) \setminus F(X)$; $P(Y) \setminus F(Y)$, where $F = P_{f,n}^{c}, P_{f}^{c}$.

Theorem 3. Suppose that X and Y are elements of M_{Ω} , $X \in M_{\Omega}$ and $Y \in M_{\Omega}$. Then the following conditions are equivalent:

 $1. Sh(\Omega X) = Sh(\Omega Y);$

2. $P(X) \setminus P^{c}(X); P(Y) \setminus P^{c}(Y).$

Theorem 4. Suppose that X and Y are elements of M_{Ω} . Then $Sh(\Omega X) = Sh(\Omega Y)$ if and only if $ShX = Sh(\Omega X)$.

It is known that from the inequality $ShX \le ShY$ it follows $Sh(\Omega X) \le Sh(\Omega Y)$. In particular, the equality ShX = ShY implies $Sh(\Omega X) = Sh(\Omega Y)$.

Now let $Sh(\Omega X) = Sh(\Omega Y)$. From the fact that the compacts ΩX and ΩY are zero-dimensional and metrizable, and by Mardeschicha Segal theorem [2], ΩX and ΩY are homeomorphic. If for any $y \in \Omega X$ the set $\pi_y^{-1}(y)$ has the trivial shape, then by Theorem 7 [3] we have $ShY = Sh(\Omega X)$; By virtue of the zero-dimensionality and equality $ShY = Sh(\Omega X)$ it follows Y; ΩX ; ΩY .

International Multidisciplinary Conference Hosted from Manchester, England 25th Dec. 2022

https://conferencea.org

Note that in this case ShX = ShY and X; Y, i.e. $ShX = Sh(\Omega X)$ is equivalent to ShX = ShY.

Corollary 3. A) The space $P^{c}(X)$ is an *ASR* if and only if X is connected;

B) $P^{c}(X)$ is an ANSR if and only if X has finitely many connected components.

Theorem 5. For any infinite zero-dimensional compacts X and Y the followings are true:

a) If ShX = ShY, then $P_n(X)$; $P_n(Y)$;

b) if ShX = ShY, then $P(X) \setminus P_n(X)$; $P(Y) \setminus P_n(Y)$;

c) $ShP_n(X) = ShP_n(Y)$ if and only if $P(X) \setminus P_n(X)$; $P(Y) \setminus P_n(Y)$;

d) ShF(X) = ShF(Y) if and only if $P(X) \setminus F(X)$; $P(Y) \setminus F(Y)$, where *F* are locally convex subfunctors of the functor P_n ;

e) ShX = ShY if and only if $P(X) \setminus \delta(X)$; $P(Y) \setminus \delta(Y)$.

Theorem 6. For any infinite zero-dimensional compacts X and Y the following conditions are equivalent:

1.
$$ShX = ShY$$
;

2.
$$ShF(X) = ShF(Y)$$
, where $F = P_{f,n}, P_{f,n}^{c}, P_{f,n}^{c}, P_{f,n}^{c}$

3. *X*; *Y*;

4. $P(X) \setminus F(X); P(Y) \setminus F(Y);$

Theorem 7. For any infinite compacts X and Y we have:

A) if ShX = ShY, then $P(X) \setminus P_n(X)$; $P(Y) \setminus P_n(Y)$ for any $n \in N$;

B) if ShX = ShY, then $P(X) \setminus F(X)$; $P(Y) \setminus F(Y)$, where F are locally convex subfunctors of the functors P_n .

Theorem 8. For any infinite compacts $X \in M_{\Omega}$ and $Y \in M_{\Omega}$ we have:

A) ShX = ShY if and only if $P(X) \setminus P_n(X)$; $P(Y) \setminus P_n(Y)$;

B) ShX = ShY if and only if $P(X) \setminus F(X)$; $P(Y) \setminus F(Y)$.

References

1. K. Borsuk Shape theory. Mir, 1976, r.187.

2. S.Mardesic, J.Segal Shapes of compacta and ANR-systems. Fund. Math. LXXII, 1971, pp 41-59.

3. Y.Kodama, S.Spiez, T.Watanabe On shapes of hyperspaces. Fund.Math. 1978, pp, 11, 59-67.

4. A. Pelczynski A remark on spaces for zerodimensional X. Bull. Acad. Polon. Scr.Sci. Math. Astronom. Phys, 19, 1965, pp. 85-89.

International Multidisciplinary Conference Hosted from Manchester, England 25th Dec. 2022

5. VV Fedorchuk, Probability measures in topology. Advances Mat. Science 1991, T.46, 1. 41-80.

https://conferencea.org

6. S.Mardesic, J.Segal Equivalence of the Borsuk and the ANR-system approach to shapes. Fund. Math. LXXII, 1971, pp. 61-66.

7. T.F.Zhuraev Some geometric properties of the function of probability measures P and its subfunctors. M.MGU, cand.disser. 1989, 90, p.

