International Multidisciplinary Conference Hosted from Manchester, England https://conferencea.org 25th Dec. 2022

SOME PROPERTIES OF THE SPACE OF PROBABILITY MEASURES

Rakhmatullayev A. X.

Davletov D. E.

Mongiyev A.I.

e-mail: olimboy56@gmail.com, de _davletov@mail

In this note we consider covariant functors acting in the categorie of compacts, preserving the shapes of infinite compacts, *ANR*-systems, moving compacts, shape equivalence, homotopy equivalence and $A(N)SR$ properties of compacts. As well as, shape properties of a compact space X consisting of connectedness components 0 of this compact X under the action of covariant functors, are considered. And as we study the shapes equality $\overline{ShX} = \overline{ShY}$ of infinite compacts for the space $P(X)$ of probability measures and its subspaces.

For a compact X by $P(X)$ denote the space of probability measures. It is known that for an infinite compact X, this space $P(X)$ is homeomorphic to the Hilbert cube Q. For a natural number $n \in N$ by $P_n(X)$ denote the set of all probability measures with no more than *n* support, i.e. $P_n(X) = \{ \mu \in P(X) : | \text{supp}\mu | \le n \}.$ The compact $P_n(X)$ is a convex linear combination of Dirac measures in the form

$$
\mu = m_1 \delta_{x_1} + m_2 \delta_{x_2} + \ldots + m_n \delta_{x_n}, \sum_{i=1}^n m_i = 1, m_i \ge 0, x_i \in X,
$$

 δ_{x_i} − the Dirac measure at a point x_i . By $\delta(X)$ denote the set of all Dirac measures. Recall that the space $P_f(X) \subset P(X)$ consists of all probability measures in the form $\mu = m_1 \delta_{x_1} + m_2 \delta_{x_2} + ... + m_k \delta_{x_k}$ of finite support, for each of which $m_i \ge \frac{N}{k+1}$ \geq *k k* $m_i \geq \frac{k}{l-1}$ for some *i*. For a positive integer *n* put $P_{f,n} \equiv P_f \bigcap P_n$. For a compact *X* we have $P_{f,n}(X) = \{ \mu \in P_f(X) : |{\rm supp }\mu | \leq n \}; \quad P_f^c \equiv P_f \bigcap P^c, P_{f,n}^c \equiv P_f \bigcap P_n \bigcap P^c P_n^c \equiv P^c \bigcap P.$ *C f ⁿ C f ⁿ C f* $P_f^c \equiv P_f \bigcap P_c^C, P_{f,n}^c \equiv P_f \bigcap P_n \bigcap P_c^C, P_n^c \equiv P_c \bigcap$ For the compact X by $P^{c}(X)$ denote the set of all measures $\mu \in P(X)$ the support of each of which lies in one of the components of the compact *X* [7].

For a space X by Ω X denote the expansion (partition) of the space X consisting of all the connected components. If $f: X \to Y$ is a continuous mapping, then the continuous mapping $\Omega f : \Omega X \to \Omega Y$ is uniquely determined by condition $\pi_Y \circ f = \Omega f \cdot \pi_X$, where $\pi_Y : Y \to \Omega Y$ and π _x : *X* \rightarrow Ω *X*, i.e. we have the following diagram

International Multidisciplinary Conference Hosted from Manchester, England https://conferencea.org 25th Dec. 2022

 $\Omega X \rightarrow \Omega Y$ *X Y Y f X f* Ω π_{y} \downarrow π \rightarrow (1)

Lemma 1. If X is a compact ANR-space, then the map $P^{c}(\pi_{x})$ is a homotopy equivalence. **Theorem 1.** Let X be a compact and let π _x : $X \rightarrow \Omega X$ be a quotient map. Then the mapping $P^{c}(\pi_{X})$ induces a shape equivalence, i.e. $\mathcal{S}h(P^{c}(X)) = \mathcal{S}h(\Omega X)$.

Definition [5] A normal subfunctor F of the functor P_n is called locally convex if the set $F(\tilde{n})$ is locally convex.

We say that a functor F_1 is a subfunctor (respectively nadfunktorom?) of a functor F_2 if there exists a natural transformation $h: F_1 \to F_2$ that the map $h(X): F_1(X) \to F_2(X)$ is a monomorphism (epimorphism) for each object X . By exp denote the hyperspace functor of closed subsets. For example, the identity functor Id is a subfunctor of exp_n , where $\exp_{n}X=\{F\in \exp X:|F|\leq n\},$ and the $\,$ th degree functor $\,$ " is a nadfunktorom of functors \exp_{n} and $SP_Gⁿ$. A normal subfunctor F of the functor P_n is uniquely determined by its value $F(n)$ at an *n*-point space. Note that $P_n(n)$ is the $(n-1)$ -dimensional simplex. Any subset of the (*n* −1)-dimensional simplex σ^{n-1} defines a normal subfunctor of the functor P_n if it is invariant under simplicial mappings.

An example of not normal subfunctor of the functor P_n is the functor of probability measures P_n^c whose supports lie in one of components. One of the examples of locally convex subfunctors of P_n , is a functor $SP^n = SP_{S_n}^n$ $n \equiv SP_s^{\prime \prime}$.

Corollary 1. If for compacts X and Y the equality $|\Omega X| = |\Omega Y| = \aleph_0$ holds, then $Sh(P^c(X)) = Sh(P^c(Y))$ and $ShP(X) = ShP(Y)$, where $|Z|$ is the cardinality of a set Z. By M_{Ω} we denote the class of all compacts X such that ΩX is metrizable. From corollary it follows that if $X, Y \in M_{\Omega}$, then ΩX and ΩY have a countable dense set of isolated points [4]. **Corollary 2.** If $X, Y \in M_\Omega$, then either $Sh(P^c(X)) \geq Sh(P^c(Y))$ or $Sh(P^c(X)) \leq Sh(P^c(Y))$. Therefore, if *X* and QY are infinite, then $Sh(P^c(X)) = Sh(P^c(Y))$, i.e. $Sh(P^c(X)) \geq Sh(P^c(Y))$ and $Sh(P^c(X)) \leq Sh(P^c(Y)).$

International Multidisciplinary Conference Hosted from Manchester, England https://conferencea.org 25th Dec. 2022

Remark. In [6] it is shown that the Borsuk's definition of shapes of compacts is equivalent to the shapes of *ANR*-systems.

Lemma 2. For any compact X we have $\left| \Omega P_f(X) \right| = \left| \Omega X \right|$.

Let us note that for all $x \in X$ and $y \in X$ between sets $(r_f^{-1})(x)$ and $(r_f^{-1})(y)$ there is a one-one correspondence, i.e. to an arbitrary point

 $\mu_{\mathbf{x}} \in (P_f^{-1})(X)$ we assign $\mu_{\mathbf{y}} \in (P_f^{\mathbf{x}})^{-1}$, where

$$
\mu_{x} = m_{0} \delta_{x_{0}} + m_{1} \delta_{x_{1}} + \ldots + m_{k} \delta_{x_{k}}, \mu_{y} = m_{0} \delta_{y_{0}} + \ldots + m_{k} \delta_{x_{k}}.
$$

In the case of the infinite compacts X and Y the spaces $P(X)$ and $P(Y)$ are homeomorphic to the Hilbert cube Q. If A and B are Z -sets lying in the compacts $P(X)$ and $P(Y)$, then by Chapman's theorem [1], $ShA = ShB$ if and only if $P(X) \setminus A$ is homeomorphic to $P(Y) \setminus B$. In [5,7] it is shown that the subspaces $F(X)$ and $F(Y)$ are Z-sets in the compacts $P(X)$ and $P(Y)$, where $F = P_f(X)P_{f,n}(X)P_{f,n}(X)P_f^c(X)$ *f C* $f = P_f(X)$, $P_{f,n}(X)$, $P_f^c(X)$, $P_f^c(X)$. Moreover, it was noted that this space X is a strong deformation retract for $F(X)$. So the following is valid.

Theorem 2. For infinite compacts X and Y the following conditions are equivalent: 1. $ShX = ShY$;

 $2. P(X) \setminus P_{f}(X); P(Y) \setminus P_{f}(Y);$

3. $P(X) \setminus \delta(X)$; $P(Y) \setminus \delta(Y)$;

4. $P(X) \setminus F(X)$; $P(Y) \setminus F(Y)$, where $F = P_{f,n}^c, P_f^c$ $F = P_{f,n}^c, P_f^c$.

Theorem 3. Suppose that X and Y are elements of M_0 , $X \in M_0$ and $Y \in M_0$. Then the following conditions are equivalent:

1. $\text{Sh}(\Omega X) = \text{Sh}(\Omega Y);$

 $P(X) \setminus P^c(X); P(Y) \setminus P^c(Y).$

Theorem 4. Suppose that X and Y are elements of M_{Ω} . Then $Sh(\Omega X) = Sh(\Omega Y)$ if and only if $ShX = Sh(\Omega X)$.

It is known that from the inequality $ShX \leq ShY$ it follows $Sh(\Omega X) \leq Sh(\Omega Y)$. In particular, the equality $ShX = ShY$ implies $Sh(\Omega X) = Sh(\Omega Y)$.

Now let $Sh(\Omega X) = Sh(\Omega Y)$. From the fact that the compacts ΩX and ΩY are zero-dimensional and metrizable, and by Mardeschicha Segal theorem [2], ΩX and ΩY are homeomorphic. If for any $y \in \Omega X$ the set $\pi_y^{-1}(y)$ has the trivial shape, then by Theorem 7 [3] we have $ShY = Sh(\Omega X)$; By virtue of the zero-dimensionality and equality $ShY = Sh(\Omega X)$ it follows Y ; ΩX ; ΩY .

International Multidisciplinary Conference Hosted from Manchester, England https://conferencea.org 25th Dec. 2022

Note that in this case $ShX = ShY$ and X ; Y , i.e. $ShX = Sh(\Omega X)$ is equivalent to $ShX = ShY$.

Corollary 3. A) The space $P^{c}(X)$ is an ASR if and only if X is connected;

B) $P^{c}(X)$ is an *ANSR* if and only if X has finitely many connected components.

Theorem 5. For any infinite zero-dimensional compacts X and Y the followings are true: a) If $ShX = ShY$, then $P_n(X)$; $P_n(Y)$;

b) if $ShX = ShY$, then $P(X) \setminus P_n(X)$, $P(Y) \setminus P_n(Y)$;

c) $ShP_n(X) = ShP_n(Y)$ if and only if $P(X) \setminus P_n(X)$; $P(Y) \setminus P_n(Y)$;

d) $ShF(X) = ShF(Y)$ if and only if $P(X) \setminus F(X)$; $P(Y) \setminus F(Y)$, where F are locally convex subfunctors of the functor P_n ;

e) $ShX = ShY$ if and only if $P(X) \setminus \delta(X)$, $P(Y) \setminus \delta(Y)$.

Theorem 6. For any infinite zero-dimensional compacts X and Y the following conditions are equivalent:

1.
$$
ShX = ShY
$$
 ;

2.
$$
ShF(X) = ShF(Y)
$$
, where $F = P_{f,n}, P_{f,n}^C, P_{f,n}^C$;

 $3. X$; Y ;

4. $P(X) \setminus F(X); P(Y) \setminus F(Y);$

Theorem 7. For any infinite compacts X and Y we have:

A) if $ShX = ShY$, then $P(X) \setminus P_n(X)$; $P(Y) \setminus P_n(Y)$ for any $n \in N$;

B) if $ShX = ShY$, then $P(X) \setminus F(X)$; $P(Y) \setminus F(Y)$, where *F* are locally convex subfunctors of the functors P_n .

Theorem 8. For any infinite compacts $X \in M_\Omega$ and $Y \in M_\Omega$ we have:

A) $ShX = ShY$ if and only if $P(X) \setminus P_n(X)$; $P(Y) \setminus P_n(Y)$;

B) $ShX = ShY$ if and only if $P(X) \setminus F(X)$; $P(Y) \setminus F(Y)$.

References

1. K. Borsuk Shape theory. Mir, 1976, r.187.

2. S.Mardesic, J.Segal Shapes of compacta and ANR-systems. Fund. Math. LXXII, 1971, pp 41-59.

3. Y.Kodama, S.Spiez, T.Watanabe On shapes of hyperspaces. Fund.Math. 1978, pp, 11, 59- 67.

4. A. Pelczynski A remark on spaces for zerodimensional X. Bull. Acad. Polon. Scr.Sci. Math. Astronom. Phys, 19, 1965, pp. 85-89.

International Multidisciplinary Conference Hosted from Manchester, England https://conferencea.org 25th Dec. 2022

5. VV Fedorchuk, Probability measures in topology. Advances Mat. Science 1991, T.46, 1. 41-80.

6. S.Mardesic, J.Segal Equivalence of the Borsuk and the ANR-system approach to shapes. Fund. Math. LXXII, 1971, pp. 61-66.

7. T.F.Zhuraev Some geometric properties of the function of probability measures P and its subfunctors. M.MGU, cand.disser. 1989, 90, p.

