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In this note, we consider covariant functors in the categories of −Comp compact spaces, Metr-

metrizable spaces, S -stratifiable spaces, − spaces, paracompact p -spaces, and continuous 

self-maps. It is proved that functors with finite supports acting in certain categories preserve 

finite-dimensional spaces and weakly countable spaces. Closed functors with finite support are 

defined and it is proved that closed functors preserve the class of S -spaces. 

Recall the definition and some normality properties of a covariant functor CompCompF →:  

acting in the category of compact sets. The functor F  is said to be: 

Stores the empty set and point if  =)(F  and {1}=({1})F  where 0},{ kk  we denote 

the set of non-negative integers - 1}{0,1,..., −k  less than k . In this terminology ={0} ;  

Monomorphic if for every (topological) embedding. XAf →:  the mapping 

)()(:)( XFAFfF →  is an embedding.  

Epimorphic if, for every mapping YAf →:  onto Y , the mapping )()(:)( YFAFfF →  is 

also a mapping “to”';  

Preserves intersections if for any family }:{ AA 
  of closed subsets of X  and identical 

embeddings XAi →


: , mapping XAAFiF → }:)({:)( 
   defined by 

))((=))(( 
A

iFiF , is an embedding for every A ;  

Pre-images if for every mapping YXf →:  and every closed set YA  the mapping  

)())()(
)(

( 1

1
AFAf

A
fF

f
→−

−
 is a homeomorphism; 

Preserves weight if )(=))(( XXF   for an infinite compact space X ;  

Continuous if for every inverse spectrum }:;{= AXS  

  from bicompacta, a 

homeomorphism is a mapping  

)(lim)lim(: SFSFf →  which is the limit of mappings )(


F  if 
 XS →lim: -through 

projections of the S  spectrum. 

In what follows, we assume that all functors under consideration are monomorphic and 

preserve intersections. We also assume that all functors preserve non-empty spaces. This 

restriction is not essential, since by doing so we exclude from consideration only the empty 
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functor, i.e., the functor F  that maps any space to the empty set. Indeed, let =)(XF  for 

some non-empty bicompact set X . 

Then ( ) ( ) =1= FXF  since F  is monomorphic. Now let Y  be an arbitrary non-empty 

compact set. Consider a constant mapping 1: →Yf  Then ( ) ( )( ) ( )  =1FfFfF . Hence the 

space ( )YF  is empty because it maps to the empty set. So, we have proved that there is a unique 

monomorphic functor that preserves non-empty sets. 

Let CompCompF →:  be a functor. ),( YXC  denotes the space of continuous mappings from 

X  and Y  in the compact-open topology. In particular,  ( )YkC ,  is naturally homeomorphic to 

the k th power of kY  of the space Y . 

The map   Yk →:  is assigned a dot ( ) ( )( ) .1,...0 kYk −  

For a functor F , a bicompact space X  of a natural number k , we define a mapping 

 ( )  ( ) ( )XFkFXkC
kXF

→,:
,,

  by ( ) ( )( )aFa
kXF

 =,
,,

 where  ( )  ( )kFXkC   ,, . 

When it is clear which functor and bicompact space we are talking about, we will denote the 

mapping 
kXF ,,

  by 
kX ,

  or 
k

 . 

Necessary facts related to covariant functors and their properties can be found in [1-2]. 

Lemma 1. Let TychTychF →:  be monomorphic, preserving intersections, inverse images of 

mappings, by continuous supports of a functor of degree n . Then for any ni 0,=  the set 

( )iF
ii−

 is open -closed in ( )iF  if ( ) CompCompF  . 

If the functor satisfies the conditions of Lemma 1, then by Theorem 5.1 [3] we have 

Theorem 1. If the functor F  satisfies the conditions of Lemma 1, then any Tychonoff space 

X  and any ni 0,=  map ( ) ( )XFiFX
i

i

iXF
→:

,,
  factorial. 

Theorem 2. Let TychTychF →:  be a monomorphic, intersection-preserving, preimage-

preserving functor of degree n , a set 1( )nF n−  is open in ( )F n , then the functor F  is 

continuously supported if the mapping 

( ): ( )n

FXi nX F n F X  →  closed  

Definition. A continuous functor F  TychTych→  with finite supports n  is called closed if 

the map : ( ) ( )n

Fxn X F n F X  →  is closed. 

A 
1

T -space X  is called stratifiable [4] (lace, short S -space ) if each open set XU   can be 

associated with the sequence  NnU
n

:  open subsets in such a way that the following 

conditions are satisfied; 

a) UU
n
  for all Nn ; b)   UNnU

n
=:  ; 

c) if VU  , then 
nn

VU   for all n . 
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Note[5] that S -spaces are perfectly normal and paracompact, and also a finite union and a 

countable product of an S -space is again a S -space. It was shown in [5] that every S -space is 

a  -space. Hence S -space is a paracompact  -space. 

If the functor TychTychF →:  is closed, then the space )(XF  is an S - space if and only if X  

is an S -space and ( )F n  is also S -space. Since the space ( )nX F n  is S - the space  4 . S -

space is preserved under closed mappings  3 . 

Therefore, it takes place. 

Theorem 3. Normal closed functors TychTychF →:  with finite supports n  preserve the 

category of S -spaces. 

Definition [6]. A Hausdorff space X  is called an -space if it can be mapped onto some S -

space S  by a perfect mapping. 

Let TychTychF →:  be a normal or seminormal functor preserving S-spaces and perfect 

mappings, i.e. SStF )(  and )( fF  is a perfect mapping if f  is a perfect mapping. 

In this case, there is 

Theorem 4. Let TychTychF →:  be a seminormal functor preserving S - spaces and perfect 

mappings. Then the functor F  preserves − spaces. 

Since closed functors preserve the category of S -spaces and perfect mappings, we therefore 

have 

Theorem 5. Closed functors SSF →:  preserve -spaces. 

For a seminormal functor CompCompF →:  and a Tikhonov space X  we set 

 XuppaXFaXF  s:)(=)( 
 , where −X Stono is the Chekhov extension of the space 

X . 
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