14th-TECH-FEST-2023

International Multidisciplinary Conference Hosted from Manchester, England 25th May 2023

https://conferencea.org

РЕНТГЕНОФАЗОВЫЙ АНАЛИЗ КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ НИТРАТА КАЛЬЦИЯ

3. К. Джуманазарова, Г. С. Буркитбаева, Г.Ж.Алламуратова

При образование комплексов витаминов и амидов с неорганическими веществами изменяются их химические и биологические свойства, причём витамины находясь в составе таких соединений, обнаруживают биологическую активность, не свойственную витаминам в свободном состояние, а ионы металлов в сочетании с витаминами и амидами становятся менее токсичными и могут катализировать различные биохимические процессы.

Комплексное соединение состава $Ca(NO_3)_2 \cdot CH_3CONH_2 \cdot CO(NH_2)_2$ синтезировано путем интенсивного перемешивания 1,18 г (0,005 моль) тетрагидрата нитрата кальция с 0,2954 г (0,005 моль) ацетамида и 0,3004 г (0,005 моль) карбамида в агатовой ступке при комнатной температуре в течение 3 часов. Выход продукта составляет 94,22%. Соединение состава $Ca(NO_3)_2 \cdot HCONH_2 \cdot H_2NCONHNO_2 \cdot H_2O$ синтезировано путем интенсивного перемешивания 1,18 г (0,005 моль) тетрагидрата нитрата кальция с 0,2252 г (0,005 моль) формамида и 0,5253 г (0,005 моль) нитрокарбамида в агатовой ступке при комнатной температуре в течение 3 часов. Выход продукта составляет 98,53%.

Анализ синтезированных соединений на содержание кальция проводили согласно [1]. Азот определялся по методу Дюма [2], углерод и водород с сжиганием в токе кислорода (Таблица 1). Для установления индивидуальности синтезированных соединений снимали дифрактограммы на установке ДРОН-2.0 с Сu-антикатодом [3].

Таблица 1 Результаты элементного анализа комплексных соединений нитрата кальция

Соединение	Ca,%		N	1,%	C	2,%	Н,%		
	Найд	Вычис	Найд	Вычис	Найд	Вычис	Найд	Вычис	
	. //		•		•	•			
Ca(NO ₃) ₂ ·CH ₃ CONH	14,23	14,13	17,57	17,36	44,73	44,64	4,38	4,25	
$_{2}$ ··CO(NH ₂) ₂									
Ca(NO ₃) ₂ ·HCONH ₂ ·	12,17	12,04	18,73	18,58	37,06	37,17	3,62	3,56	
·H ₂ NCONHNO ₂ ·H ₂ O								1	

Сравнением межплоскостных расстояний и относительных интенсивностей свободных молекул формамида, ацетамида, карбамида, нитрокарбамида тетрагидрата нитрата

14th-TECH-FEST-2023

International Multidisciplinary Conference Hosted from Manchester, England 25th May 2023

https://conferencea.org

кальция и координационных соединений составов $Ca(NO_3)_2 \cdot CH_3CONH_2 \cdot CO(NH_2)_{2,}$ $Ca(NO_3)_2 \cdot HCONH_2 \cdot H_2NCONHNO_2 \cdot H_2O$ показано, что новые координационные соединения существенно различаются между собой и от подобных им исходных соединений. Следовательно, синтезированные комплексы нитрата кальция имеют индивидуальные кристаллические решётки (Таблица 2).

Таблица 2 Межплоскостные расстояния и относительные интенсивности линий координационных соединений никотината кальция с амидами.

Соединение	d,Å	I,%	d,Å	I,%	d,Å	I,%	d,Å	I,%	d,Å	I,%
	19,15	54	4,93	42	2,90	37	2,17	33	1,689	15
	18,35	65	4,82	29	2,88	27	2,16	31	1,676	15
	16,44	73	4,72	19	2,84	23	2,13	23	1,659	27
	14,69	77	4,53	23	2,82	44	2,12	23	1,655	27
	14,49	62	4,44	38	2,79	27	2,10	19	1,642	28
	14,03	77	4,34	19	2,78	23	2,06	19	1,632	23
	13,20	31	4,32	23	2,72	25	2,05	23	1,611	23
	12,96	46	4,27	24	2,70	27	2,02	23	1,596	21
	11,02	35	4,22	38	2,67	19	1,997	23	1,586	21
Ca(NO ₃) ₂ ·HCONH ₂ ·	10,45	31	4,15	35	2,64	19	1,984	27	1,571	17
·H ₂ NCONHNO ₂ ··H ₂ O	9,96	19	4,03	33	2,61	31	1,961	19	1,561	17
	9,38	31	3,95	19	2,57	17	1,937	19	1,552	17
Co(NO) CH CONH	9,00	19	3,86	31	2,54	23	1,925	19	1,549	21
	8,75	17	3,75	31	2,53	23	1,910	19	1,534	17
	8,48	27	3,67	35	2,50	25	1,890	17	1,523	17
	7,66	38	3,58	23	2,47	25	1,877	21	1,514	17
	7,48	39	3,54	23	2,46	25	1,862	23	1,510	17
	7,28	35	3,50	19	2,44	24	1,854	29	1,500	25
	6,98	31	3,44	23	2,42	19	1,833	19	1,4,92	15
	6,90	35	3,39	35	2,41	27	1,825	18	1,484	15
	17,90	8	4,71	3	2,79	6	1,899	3	1,507	4
	17,08	7	4,51	5	2,74	4	1,886	3	1,500	3
Ca(NO ₃) ₂ ·CH ₃ CONH ₂ ·	16,44	13	4,43	6	2,71	4	1,844	27	1,492	4
·CO(NH ₂) ₂	15,30	8	4,32	6	2,68	4	1,833	3	1,485	4
	14,21	7	4,23	5	2,66	4	1,807	3	1,477	4

14th-TECH-FEST-2023

International Multidisciplinary Conference Hosted from Manchester, England 25th May 2023

https://conferencea.org

13,60 7 4,13 5 2,63 5 1,793 5 1,470 5 13,04 8 4,08 5 2,59 4 1,786 5 1,466 4 12,96 7 4,03 5 2,53 4 1,771 3 1,454 4 11,72 8 3,86 5 2,52 4 1,748 3 1,450 4 10,70 3 3,80 4 2,48 3 1,742 4 1,443 4 9,63 2 3,73 5 2,43 5 1,729 3 1,435 4 8,65 3 3,67 4 2,40 4 1,708 5 1,421 5 8,17 4 3,60 4 2,36 4 1,703 5 1,408 3 8,02 3 3,50 4 2,32 4 1,687 5 1,385 5 7,48 4 3,42 4 2,26 4 1,659 5 1,365 </th <th>tps://tomereneediorg</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>iaj = 0</th>	tps://tomereneediorg										iaj = 0
12,96 7 4,03 5 2,53 4 1,771 3 1,454 4 11,72 8 3,86 5 2,52 4 1,748 3 1,450 4 10,70 3 3,80 4 2,48 3 1,742 4 1,443 4 9,63 2 3,73 5 2,43 5 1,729 3 1,435 4 8,65 3 3,67 4 2,40 4 1,708 5 1,421 5 8,17 4 3,60 4 2,36 4 1,703 5 1,408 3 8,02 3 3,50 4 2,32 4 1,687 5 1,388 7 7,74 4 3,44 5 2,29 4 1,678 5 1,385 5 7,48 4 3,42 4 2,26 4 1,659 5 1,375 4 7,05 3 3,34 7 2,20 59 1,643 5 1,365 <td></td> <td>13,60</td> <td>7</td> <td>4,13</td> <td>5</td> <td>2,63</td> <td>5</td> <td>1,793</td> <td>5</td> <td>1,470</td> <td>5</td>		13,60	7	4,13	5	2,63	5	1,793	5	1,470	5
11,72 8 3,86 5 2,52 4 1,748 3 1,450 4 10,70 3 3,80 4 2,48 3 1,742 4 1,443 4 9,63 2 3,73 5 2,43 5 1,729 3 1,435 4 8,65 3 3,67 4 2,40 4 1,708 5 1,421 5 8,17 4 3,60 4 2,36 4 1,703 5 1,408 3 8,02 3 3,50 4 2,32 4 1,687 5 1,388 7 7,74 4 3,44 5 2,29 4 1,678 5 1,385 5 7,48 4 3,42 4 2,26 4 1,659 5 1,375 4 7,05 3 3,34 7 2,20 59 1,643 5 1,365 4 6,90 3 3,29 64 2,15 11 1,637 8 1,354 </td <td></td> <td>13,04</td> <td>8</td> <td>4,08</td> <td>5</td> <td>2,59</td> <td>4</td> <td>1,786</td> <td>5</td> <td>1,466</td> <td>4</td>		13,04	8	4,08	5	2,59	4	1,786	5	1,466	4
10,70 3 3,80 4 2,48 3 1,742 4 1,443 4 9,63 2 3,73 5 2,43 5 1,729 3 1,435 4 8,65 3 3,67 4 2,40 4 1,708 5 1,421 5 8,17 4 3,60 4 2,36 4 1,703 5 1,408 3 8,02 3 3,50 4 2,32 4 1,687 5 1,388 7 7,74 4 3,44 5 2,29 4 1,678 5 1,385 5 7,48 4 3,42 4 2,26 4 1,659 5 1,375 4 7,05 3 3,34 7 2,20 59 1,643 5 1,365 4 6,90 3 3,29 64 2,15 11 1,637 8 1,354 4		12,96	7	4,03	5	2,53	4	1,771	3	1,454	4
9,63 2 3,73 5 2,43 5 1,729 3 1,435 4 8,65 3 3,67 4 2,40 4 1,708 5 1,421 5 8,17 4 3,60 4 2,36 4 1,703 5 1,408 3 8,02 3 3,50 4 2,32 4 1,687 5 1,388 7 7,74 4 3,44 5 2,29 4 1,678 5 1,385 5 7,48 4 3,42 4 2,26 4 1,659 5 1,375 4 7,05 3 3,34 7 2,20 59 1,643 5 1,365 4 6,90 3 3,29 64 2,15 11 1,637 8 1,354 4		11,72	8	3,86	5	2,52	4	1,748	3	1,450	4
8,65 3 3,67 4 2,40 4 1,708 5 1,421 5 8,17 4 3,60 4 2,36 4 1,703 5 1,408 3 8,02 3 3,50 4 2,32 4 1,687 5 1,388 7 7,74 4 3,44 5 2,29 4 1,678 5 1,385 5 7,48 4 3,42 4 2,26 4 1,659 5 1,375 4 7,05 3 3,34 7 2,20 59 1,643 5 1,365 4 6,90 3 3,29 64 2,15 11 1,637 8 1,354 4		10,70	3	3,80	4	2,48	3	1,742	4	1,443	4
8,17 4 3,60 4 2,36 4 1,703 5 1,408 3 8,02 3 3,50 4 2,32 4 1,687 5 1,388 7 7,74 4 3,44 5 2,29 4 1,678 5 1,385 5 7,48 4 3,42 4 2,26 4 1,659 5 1,375 4 7,05 3 3,34 7 2,20 59 1,643 5 1,365 4 6,90 3 3,29 64 2,15 11 1,637 8 1,354 4		9,63	2	3,73	5	2,43	5	1,729	3	1,435	4
8,02 3 3,50 4 2,32 4 1,687 5 1,388 7 7,74 4 3,44 5 2,29 4 1,678 5 1,385 5 7,48 4 3,42 4 2,26 4 1,659 5 1,375 4 7,05 3 3,34 7 2,20 59 1,643 5 1,365 4 6,90 3 3,29 64 2,15 11 1,637 8 1,354 4		8,65	3	3,67	4	2,40	4	1,708	5	1,421	5
7,74 4 3,44 5 2,29 4 1,678 5 1,385 5 7,48 4 3,42 4 2,26 4 1,659 5 1,375 4 7,05 3 3,34 7 2,20 59 1,643 5 1,365 4 6,90 3 3,29 64 2,15 11 1,637 8 1,354 4		8,17	4	3,60	4	2,36	4	1,703	5	1,408	3
7,48 4 3,42 4 2,26 4 1,659 5 1,375 4 7,05 3 3,34 7 2,20 59 1,643 5 1,365 4 6,90 3 3,29 64 2,15 11 1,637 8 1,354 4		8,02	3	3,50	4	2,32	4	1,687	5	1,388	7
7,05 3 3,34 7 2,20 59 1,643 5 1,365 4 6,90 3 3,29 64 2,15 11 1,637 8 1,354 4		7,74	4	3,44	5	2,29	4	1,678	5	1,385	5
6,90 3 3,29 64 2,15 11 1,637 8 1,354 4		7,48	4	3,42	4	2,26	4	1,659	5	1,375	4
		7,05	3	3,34	7	2,20	59	1,643	5	1,365	4
6,47 95 3,20 4 2,14 4 1,615 5 1,340 4		6,90	3	3,29	64	2,15	11	1,637	8	1,354	4
		6,47	95	3,20	4	2,14	4	1,615	5	1,340	4

ЛИТЕРАТУРА

- 1. Пршибил Р. Комплексоны в химическом анализе. –М.: ИЛ, 1960. -489 с.
- 2. Климова П.М. Основы микрометода анализа органических соединений. –М.: Химия, 1967. -19 с.
- 3. Ковба П.М., Трунов В.К. Рентгенофазовый анализ. М.: МГУ, 1976, -232 с.