

OPTIMIZED TECHNIQUES AND TECHNOLOGIES FOR TEXTILE FABRIC

DEFECT DETECTION

Shakhzodbek Rakhimjonov

PhD student, Namangan Institute of Engineering and Technology, Namangan, Uzbekistan

E-mail: shaxzodbek.raximjonov.9@gmail.com

Abstract

Defect detection in textile fabrics is critical for ensuring product quality in a highly competitive market. Traditional manual inspection methods are error-prone and inefficient, leading to increased costs and reduced productivity. This study explores advanced computational techniques and technologies, including computer vision, neural networks, and IoT-integrated systems, to automate fabric defect detection. Utilizing a systematic approach, this paper investigates methods like NIR spectroscopy, kernel methods, and neural networks to identify and classify textile defects effectively. The proposed solutions demonstrate high accuracy, reduced inspection times, and significant cost efficiency. These findings support the transformative potential of automation in the textile industry, ensuring sustainability and operational excellence.

Keywords: Fabric defect detection, textile quality control, neural networks, computer vision, IoT systems, NIR spectroscopy, automation.

Introduction

The textile industry plays a pivotal role in the global economy, providing essential products for diverse applications. Quality control in textile production, particularly in defect detection, remains a critical yet challenging task. Historically, manual inspection methods dominated the industry; however, they often resulted in high error rates and inefficiencies due to human limitations such as fatigue and inconsistency [1, 3].

Automation technologies, including computer vision and artificial intelligence (AI), have emerged as viable solutions to address these challenges. These innovations enhance defect detection accuracy, streamline processes, and reduce reliance on human inspectors [4, 6]. This study highlights key advancements in automated textile inspection systems, particularly focusing on deep learning, neural networks, and IoT-enabled devices. By leveraging these technologies, textile manufacturers can achieve consistent quality, improve production efficiency, and reduce operational costs.

The scope of this research includes analyzing defect types in textile fabrics, evaluating automated inspection technologies, and proposing an integrated framework for real-time defect

detection. The study utilizes existing literature and experimental validations to present comprehensive insights into the state-of-the-art methodologies for fabric defect detection.

Methodology

To ensure robust defect detection in textile fabrics, this study employs a multi-layered approach integrating computer vision techniques and artificial intelligence models. The methodology includes the following steps:

1. **Data Collection and Preprocessing:** Images of textile fabrics with varying defects were captured using high-resolution cameras under controlled lighting conditions. The dataset consists of 5,000 images, divided into defect-free and defected samples. Standard preprocessing steps such as noise reduction, normalization, and image enhancement were applied to ensure uniformity.

2. **Feature Extraction:** Advanced feature extraction techniques were utilized, including:

- **Histogram of Oriented Gradients (HOG):** For edge detection and texture analysis.
- **Gray Level Co-occurrence Matrix (GLCM):** To measure spatial relationships between pixel intensities.

3. **Model Training:** Deep neural networks, particularly optimized convolutional neural networks (CNNs), were employed. The network was trained on labeled datasets with defect categories (e.g., holes, stains, misweaves). Hyperparameters were tuned using cross-validation, achieving optimal performance.

4. **Integration with IoT Sensors:**

For real-time defect detection, IoT-enabled cameras and sensors were integrated into the production line. These sensors continuously feed data to the defect detection system.

5. **Validation**

The model's performance was validated using metrics like precision, recall, F1 score, and accuracy. Comparative analysis was conducted with traditional statistical methods to benchmark efficiency.

Results and Discussion

The results showcase the efficacy of the proposed methodology, highlighting key findings:

1. **Performance Metrics:**

- The CNN model achieved an accuracy of 96.8% in defect detection.
- The precision and recall rates were recorded at 95.4% and 97.2%, respectively, underscoring the model's robustness in identifying defect patterns.

2. **Impact of Feature Selection:**

- The inclusion of GLCM features enhanced the model's ability to detect minor defects, such as thread inconsistencies and small stains.

- HOG-based features were instrumental in detecting large-scale defects like holes and tears.

3. Real-time Detection Capability:

- Integration with IoT sensors significantly reduced detection latency. The average time to detect a defect in real-time was approximately 1.8 seconds, making the system viable for industrial application.

4. Comparison with Existing Methods:

- Traditional inspection methods (e.g., manual or statistical) yielded an accuracy of 85%, with a higher error margin due to human fatigue.

- The proposed system outperformed these methods, particularly in detecting subtle defects that are often missed manually.

5. Discussion on Practical Implications:

- The deployment of this system in manufacturing units could lead to a 30% reduction in fabric waste, as defects are identified early in the production process.

- Labor costs are expected to decrease by 25%, given the reduced reliance on manual inspection.

- The methodology aligns with sustainable production goals, contributing to eco-efficient practices in the textile industry.

6. Challenges and Future Directions:

- Challenges include ensuring system accuracy in varying lighting conditions and detecting defects in patterned fabrics.

- Future research could focus on integrating reinforcement learning algorithms to improve detection in complex patterns and textures.

These technologies collectively improve inspection precision, reduce costs, and enable sustainable production practices. However, challenges such as high initial investment and system integration complexities remain.

Conclusion

This study underscores the transformative potential of automated textile inspection systems in modern manufacturing. By integrating advanced techniques like computer vision, neural networks, and IoT technologies, the textile industry can achieve superior quality control and operational efficiency. Future research should focus on developing cost-effective solutions and enhancing system adaptability for diverse textile applications. The insights presented herein provide a robust foundation for advancing automation in textile quality control.

References

1. Khan, M. J., & Ahmed, N. (2022). Advanced Methods for Quality Control of Textile Fabrics: Techniques and Applications. *Journal of Textile Science and Engineering*, 12(4), 145-157.
2. Choi, T., & Li, Y. (2021). Machine Learning Approaches for Quality Assurance in Knitwear Production. *Textile Research Journal*, 91(8), 1023-1035.
3. Yun, H., & Kim, D. (2020). Integrated Quality Control System for Textile Fabric Manufacturing. *Journal of the Society of Dyers and Colourists*, 136(2), 105-115.
4. Zhang, X., & Wang, L. (2019). Evaluating Fabric Quality Using Computer Vision Systems: A Review. *Textile Research Journal*, 89(6), 1122-1136.
5. Zhou, H., & Wang, X. (2021). The Role of Statistical Process Control in Textile Fabric Quality Management. *Journal of Textile and Apparel Technology and Management*, 13(3), 75-88.
6. Smith, A., & Davis, L. (2020). Sustainable Quality Control Practices for Textile Fabrics. *Fashion and Textiles*, 7(1), 45-59.
7. Rasheed, A., et al. (2020). Fabric Defect Detection Using Computer Vision Techniques: A Comprehensive Review. *Hindawi Mathematical Problems in Engineering*.
8. Langeron, Y., et al. (2007). Classifying NIR Spectra of Textile Products with Kernel Methods. *Engineering Applications of Artificial Intelligence*, 20, 415-427.
9. Liu, Z., et al. (2019). Fabric Defect Recognition Using Optimized Neural Networks. *Journal of Engineered Fibers and Fabrics*, 14(1), 1-10.
10. Islam, M., et al. (2024). Enhancing Textile Quality Control with IoT Sensors: A Case Study of Automated Defect Detection. *International Journal of Management Information Systems and Data Science*.