BASIC THEOREMS OF DIFFERENTIAL CALCULUS AND THEIR APPLICATION

To'raxonov Islombek

(UrSU teacher),

Bekchanova Nilufar

(UrSU teacher)

Rahimova Gulora

(UrSU teacher)

Annotation. This article gives you some easy ways to solve common. Basic theorems of differential calculus and their application

Key words: vector, inequality, angle, identity

We can often use theorems on derivative functions to solve some problems. These theorems play an important role in checking functions.

Theorem 1 (Farm theorem).

f(x) function $X \subset R$ given in the package. $x_0 \in X$ for the circumference of the point

$$\begin{split} &U_{\delta}(x_0)\!=\!(x_0-\delta,\;x_0+\delta)\!\subset\!X & (\delta\!>\!0) \text{ The following conditions must be met:} \\ &1)\;\forall x\!\in\!U_{\delta}(x_0)\,\mathrm{da}\,f(x)\!\leq\!f(x_0) & (f(x)\!\geq\!f(x_0)), \end{split}$$

1)
$$\forall x \in U_{\delta}(x_0) \operatorname{da} f(x) \le f(x_0)$$
 $(f(x) \ge f(x_0))$

2)
$$f'(x_0)$$

be available and limited.

Then $f'(x_0) = 0$ is being..

Let's say, $\forall x \in U_{\delta}(x_0)$ in $f(x) \le f(x_0)$ let it be Obviously, in this case

$$f(x) - f(x_0) \le 0$$

will be. Conditionally f(x) function x_0 limited in point $f'(x_0)$ yield. Then

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0}$$

Will be. At the moment, $x > x_0$ will be

$$\frac{f(x) - f(x_0)}{x - x_0} \le 0 \implies \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \le 0,$$

 $x < x_0$ will be

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0 \implies \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \ge 0 \text{ from } f'(x_0) = 0 \text{ It turns}$$

out that.

Theorem 2 (Roll theorem). Suppose, f(x) function [a, b] to meet the following conditions:

- 1) $f(x) \in C[a, b]$,
- 2) $\forall x \in (a, b)$ in f'(x) available and limited,

3) f(a) = f(b) let it be. $x_0 \in (a, b)$ $f'(x_0) = 0$

Conditionally $f(x) \in C[a, b]$. According to Weierstrass's second theorem f(x) function [a, b] at its maximum and minimum values, c_1, c_2 points $(c_1, c_2 \in [a, b])$ found,

$$f(c_1) = \max\{f(x) \mid x \in [a, b]\},\$$

$$f(c_2) = \min\{f(x) \mid x \in [a, b]\}$$

Has been.

If $f(c_1) = f(c_2)$ been, Then [a, b] in f(x) = const is being, $\forall x_0 \in (a, b)$ at $f'(x_0) = 0$.

If $f(c_1) > f(c_2)$ be, thats f(a) = f(b) because f(x) function $f(c_1)$ and $f(c_2)$ to at least one of the values [a, b] the interior of the segment x_0 $(a < x_0 < b)$.reach the point According to the farm theorem $f'(x_0) = 0$ will be.

3-theorem (Lagranj by theorem). Suppose, f(x) function [a, b] at will be, fulfill the following conditions:

$$f(x) \in C[a, b],$$

 $\forall x \in (a, b)$ at f'(x) the product is available and limitedIn that case it is so $c \in (a, b)$ poind found,

$$f(b) - f(a) = f'(c)(b - a)$$

will be.

This
$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$
 (1)

Let's look at the function. This function satisfies all the conditions of the Roll theorem. At the same time, its a product

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

will be. According to the roll theorem, so c ($c \in (a, b)$) the point is found,

$$F'(c) = 0 \tag{2}$$

Will be.

(1) and (2) from equations

$$f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$
, that is $f(b) - f(a) = f'(c)(b - a)$

will occur.

1-result. Let's say, f(x) function (a, b) at f'(x), having a product $\forall x \in (a, b)$ at f'(x) = 0 being to. Then $\forall x \in (a, b)$ at f(x) = const will be.

 $x, x_0 \in (a, b)$ take, edges x and x_0 in the segment f(x) using Lagrange's theorem on the function $f(x) = f(x_0) = const$ being found.

2-result. f(x) and g(x) function (a, b) at f'(x), g'(x), products $\forall x \in (a, b)$ in

$$f'(x) = g'(x)$$
 been. Then $\forall x \in (a, b)$ in $f(x) = g(x) + const$ will be.

This is proof of the result f(x) - g(x) by applying result 1 to the function. Theorem 4 (Cauchy Theorem). Let, and let the functions fulfill the following conditions.

- 1) $f(x) \in C[a, b], g(x) \in C[a, b],$
- 2) $\forall x \in (a, b) \text{ da } f'(x) \text{ va } g'(x) \text{ crops are available and limited;}$
- 3) $\forall x \in (a, b) \operatorname{da} g'(x) \neq 0$ will be.

Then $c \in (a, b)$, the point is found

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Willbe.

First of all $g(b) \neq g(a)$ We emphasize that because g(b) = g(a) if so, then according to Roll's theorem $c \in (a, b)$ the point would be found g'(c) = 0 would be This is contrary to condition

3) The following

$$\Phi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} [g(x) - g(a)] \quad (x \in [a, b])$$

 $c \in (a, b)$ found point,

$$\Phi'(c) = 0$$
 will be

$$\Phi'(x) = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(x)$$
 (4)

Obviouly,

(3) and (4) relationship

$$f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) = 0$$

that is
$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

will occur.

Example 1. $\forall x', x'' \in R$ for $|\sin x' - \sin x''| \le |x' - x''|$ prove the inequality.

Let's say, x' < x'' will be. $f(x) = \sin x \ln[x', x'']$ We apply Lagrange's theorem. That's it $c \in (x', x'')$ the point is that,

$$|\sin x' - \sin x''| = |\cos c| \cdot (x'' - x')$$

willbe. If $\forall t \in R$ at $|\cos t| \le 1$ Given that, then from the above relationship,

$$|\sin x' - \sin x''| \le |x' - x''| \qquad (\forall x', x'' \in R)$$

Being.

References

- 1. Mirzaahmedov.M ,Sotiboldiyev T "Matematikadanolimpiadamasalalari" Toshkent-2003 y
- 2. Гелфанд. F "методы доказательства неравенства" Москва-1972г
- 3. Сивяшинский.В "доказательство тригонометрических неравенств" Москва-1985г